1-LS1 From Molecules to Organisms: Structures and Processes

<table>
<thead>
<tr>
<th>Students who demonstrate understanding can:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-LS1. Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.* [Clarification Statement: Examples of human problems that can be solved by mimicking plant or animal solutions could include designing clothing or equipment to protect bicyclists by mimicking turtle shells, acorn shells, and animal scales; stabilizing structures by mimicking animal tails and roots on plants; keeping out intruders by mimicking thorns on branches and animal quills; and detecting intruders by mimicking eyes and ears.]</td>
</tr>
<tr>
<td>1-LS1-2. Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive. [Clarification Statement: Examples of patterns of behaviors could include the signals that offspring make (such as crying, cheeping, and other vocalizations) and the responses of the parents (such as feeding, comforting, and protecting the offspring).]</td>
</tr>
</tbody>
</table>

The performance expectation(s) above were developed using the following elements from the National Research Council (NRC) document *A Framework for K–12 Science Education: Practices, Crosscutting Concepts, and Core Ideas*.

Science and Engineering Practices

Constructing Explanations and Designing Solutions

- Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
 - Use materials to design a device that solves a specific problem or a solution to a specific problem. (1-LS1-1)

Disciplinary Core Ideas

LS1.A: Structure and Function

- All organisms have external parts. Different animals use their body parts in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water, and air. Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive and grow. (1-LS1-1)

Crosscutting Concepts

Patterns

- Patterns in the natural and human designed world can be observed, used to describe phenomena, and used as evidence. (1-LS1-2)

Structure and Function

- The shape and stability of structures of natural and designed objects are related to their function(s). (1-LS1-1)
1-LS1 From Molecules to Organisms: Structures and Processes

<table>
<thead>
<tr>
<th>Obtaining, Evaluating, and Communicating Information</th>
<th>LS1.B: Growth and Development of Organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtaining, evaluating, and communicating information in K–2 builds on prior experiences and uses observations and texts to communicate new information.</td>
<td>▪ Adult plants and animals can have young. In many kinds of animals, parents and the offspring themselves engage in behaviors that help the offspring to survive. (1-LS1-2)</td>
</tr>
<tr>
<td>▪ Read grade-appropriate texts and use media to obtain scientific information to determine patterns in the natural world. (1-LS1-2)</td>
<td>Connections to Nature of Science</td>
</tr>
<tr>
<td>Scientific Knowledge is Based on Empirical Evidence</td>
<td>Connections to Engineering, Technology, and Applications of Science</td>
</tr>
<tr>
<td>▪ Scientists look for patterns and order when making observations about the world. (1-LS1-2)</td>
<td>Influence of Science, Engineering and Technology on Society and the Natural World</td>
</tr>
<tr>
<td>Connections to other DCIs in first grade: N/A</td>
<td>▪ Every human-made product is designed by applying some knowledge of the natural world and is built using materials derived from the natural world. (1-LS1-1)</td>
</tr>
</tbody>
</table>

California Environmental Principles and Concepts aligned to the CA NGSS: (1-LS1-1), (1-LS1-2)

Principle II: The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

Articulation of DCIs across grade-bands:

- **K.ETS1.A** (1-LS1-1);
- **3.LS2.D** (1-LS1-2);
- **4.LS1.A** (1-LS1-1);
- **4.LS1.D** (1-LS1-1);
- **4.ETS1.A** (1-LS1-1)

California Common Core State Standards Connections:

ELA/Literacy

- **RI.1.1** Ask and answer questions about key details in a text. (1-LS1-2)
- **RI.1.2** Identify the main topic and retell key details of a text. (1-LS1-2)
- **RI.1.10** With prompting and support, read informational texts appropriately complex for grade 1.
 - a. Activate prior knowledge related to the information and events in a text. **CA**
 - b. Confirm predictions about what will happen next in a text. **CA** (1-LS1-2)
- **W.1.7** Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions). (1-LS1-1)

Mathematics

- **1.NBT.3** Compare two two-digit numbers based on the meanings of the tens and one digits, recording the results of comparisons with the symbols >, =, and <. (1-LS1-2)
- **1.NBT.4–6** Use place value understanding and properties of operations to add and subtract. (1-LS1-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section titled “Disciplinary Core Ideas” is reproduced verbatim from *A Framework for K–12 Science Education: Practices, Crosscutting Concepts, and Core Ideas.*
1-LS3 Heredity: Inheritance and Variation of Traits

Students who demonstrate understanding can:

1. **Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents.**

 Clarification Statement: Examples of patterns could include features plants or animals share. Examples of observations could include leaves from the same kind of plant are the same shape but can differ in size; and a particular breed of dog looks like its parents but is not exactly the same. **Assessment Boundary:** Assessment does not include inheritance or animals that undergo metamorphosis or hybrids.

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.

- **Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena.** (1-LS3-1)

Disciplinary Core Ideas

LS3.A: Inheritance of Traits

- Young animals are very much, but not exactly like, their parents. Plants also are very much, but not exactly, like their parents. (1-LS3-1)

LS3.B: Variation of Traits

- Individuals of the same kind of plant or animal are recognizable as similar but can also vary in many ways. (1-LS3-1)

Crosscutting Concepts

Patterns

- Patterns in the natural and human designed world can be observed, used to describe phenomena, and used as evidence. (1-LS3-1)

Connections to other DCIs in first grade: N/A

Articulation of DCIs across grade-bands: 3.LS3.A (1-LS3-1); 3.LS3.B (1-LS3-1)

California Common Core State Standards Connections:

ELA/Literacy –

- **RI.1.1** Ask and answer questions about key details in a text. (1-LS3-1)

- **W.1.7** Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions). (1-LS3-1)

- **W.1.8** With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. (1-LS3-1)

Mathematics –

- **MP.2** Reason abstractly and quantitatively. (1-LS3-1)

- **MP.5** Use appropriate tools strategically. (1-LS3-1)

- **1.MD.1** Order three objects by length; compare the lengths of two objects indirectly by using a third object. (1-LS3-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section titled “Disciplinary Core Ideas” is reproduced verbatim from *A Framework for K–12 Science Education: Practices, Crosscutting Concepts, and Core Ideas.*
1-ESS1 Earth’s Place in the Universe

Students who demonstrate understanding can:

1-ESS1-1. Use observations of the sun, moon, and stars to describe patterns that can be predicted. [Clarification Statement: Examples of patterns could include that the sun and moon appear to rise in one part of the sky, move across the sky, and set; and stars other than our sun are visible at night but not during the day.] [Assessment Boundary: Assessment of star patterns is limited to stars being seen at night and not during the day.]

1-ESS1-2. Make observations at different times of year to relate the amount of daylight to the time of year. [Clarification Statement: Emphasis is on relative comparisons of the amount of daylight in the winter to the amount in the spring or fall.] [Assessment Boundary: Assessment is limited to relative amounts of daylight, not quantifying the hours or time of daylight.]

The performance expectation(s) above were developed using the following elements from the NRC document *A Framework for K–12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning and Carrying Out Investigations</td>
<td>ESS1.A: The Universe and its Stars</td>
<td>Patterns</td>
</tr>
<tr>
<td>Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Make observations (firsthand or from media) to collect data that can be used to make comparisons. (1-ESS1-2)</td>
<td>- Patterns of the motion of the sun, moon, and stars in the sky can be observed, described, and predicted. (1-ESS1-1)</td>
<td>- Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. (1-ESS1-1), (1-ESS1-2)</td>
</tr>
<tr>
<td>Analyzing and Interpreting Data</td>
<td>ESS1.B: Earth and the Solar System</td>
<td>Connections to Nature of Science</td>
</tr>
<tr>
<td>Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. (1-ESS1-1)</td>
<td>- Seasonal patterns of sunrise and sunset can be observed, described, and predicted. (1-ESS1-2)</td>
<td>Scientific Knowledge Assumes an Order and Consistency in Natural Systems</td>
</tr>
</tbody>
</table>

Connections to other DCIs in first grade: N/A

Articulation of DCIs across grade-bands: 3.PS2.A (1-ESS1-1); 5.PS2.B (1-ESS1-1), (1-ESS1-2); 5-ESS1.B (1-ESS1-1), (1-ESS1-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section titled “Disciplinary Core Ideas” is reproduced verbatim from *A Framework for K–12 Science Education: Practices, Crosscutting Concepts, and Core Ideas.*
1-ESS1 Earth's Place in the Universe

California Common Core State Standards Connections:

<table>
<thead>
<tr>
<th>ELA/Literacy –</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>W.1.7</td>
<td>Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions). (1-ESS1-1), (1-ESS1-2)</td>
</tr>
<tr>
<td>W.1.8</td>
<td>With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. (1-ESS1-1), (1-ESS1-2)</td>
</tr>
</tbody>
</table>

| Mathematics – |
|---------------|---|
| **MP.2** | Reason abstractly and quantitatively. (1-ESS1-2) |
| **MP.4** | Model with mathematics. (1-ESS1-2) |
| **MP.5** | Use appropriate tools strategically. (1-ESS1-2) |
| **1.OA.1** | Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. (1-ESS1-2) |
| **1.MD.4** | Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another. (1-ESS1-2) |

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section titled “Disciplinary Core Ideas” is reproduced verbatim from *A Framework for K–12 Science Education: Practices, Crosscutting Concepts, and Core Ideas.*
1-PS4 Waves and Their Applications in Technologies for Information Transfer

1-PS4 Waves and their Applications in Technologies for Information Transfer

Students who demonstrate understanding can:

1-PS4-1. Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate. [Clarification Statement: Examples of vibrating materials that make sound could include tuning forks and plucking a stretched string. Examples of how sound can make matter vibrate could include holding a piece of paper near a speaker making sound and holding an object near a vibrating tuning fork.]

1-PS4-2. Make observations to construct an evidence-based account that objects in darkness can be seen only when illuminated. [Clarification Statement: Examples of observations could include those made in a completely dark room, a pinhole box, and a video of a cave explorer with a flashlight. Illumination could be from an external light source or by an object giving off its own light.]

1-PS4-3. Plan and conduct an investigation to determine the effect of placing objects made with different materials in the path of a beam of light. [Clarification Statement: Examples of materials could include those that are transparent (such as clear plastic), translucent (such as wax paper), opaque (such as cardboard), and reflective (such as a mirror).] [Assessment Boundary: Assessment does not include the speed of light.]

1-PS4-4. Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance.* [Clarification Statement: Examples of devices could include a light source to send signals, paper cup and string “telephones,” and a pattern of drum beats. [Assessment Boundary: Assessment does not include technological details for how communication devices work.]

The performance expectation(s) above were developed using the following elements from the NRC document A Framework for K–12 Science Education:

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Planning and Carrying Out Investigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.</td>
</tr>
<tr>
<td>- Plan and conduct investigations collaboratively to produce data to serve as the basis for evidence to answer a question. (1-PS4-1), (1-PS4-3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constructing Explanations and Designing Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.</td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas

<table>
<thead>
<tr>
<th>PS4.A: Wave Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Sound can make matter vibrate, and vibrating matter can make sound. (1-PS4-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PS4.B: Electromagnetic Radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Objects can be seen if light is available to illuminate them or if they give off their own light. (1-PS4-2)</td>
</tr>
<tr>
<td>- Some materials allow light to pass through them, others allow only some light through and others block all the light and create a dark shadow on any surface beyond them, where the light cannot reach. Mirrors can be used to redirect a light beam. (Boundary: The idea that light travels from place to place is developed through experiences with light sources, mirrors, and shadows, but no attempt is made to discuss the speed of light.) (1-PS4-3)</td>
</tr>
</tbody>
</table>

Crosscutting Concepts

<table>
<thead>
<tr>
<th>Cause and Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Simple tests can be designed to gather evidence to support or refute student ideas about causes. (1-PS4-1), (1-PS4-2), (1-PS4-3)</td>
</tr>
</tbody>
</table>

Connections to Engineering, Technology, and Applications of Science

<table>
<thead>
<tr>
<th>Influence of Engineering, Technology, and Science on Society and the Natural World</th>
</tr>
</thead>
<tbody>
<tr>
<td>- People depend on various technologies in their lives; human life would be very different without technology. (1-PS4-4)</td>
</tr>
</tbody>
</table>

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section titled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K–12 Science Education: Practices, Crosscutting Concepts, and Core Ideas.
1-PS4 Waves and Their Applications in Technologies for Information Transfer

- Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena. (1-PS4-2)
- Use tools and materials provided to design a device that solves a specific problem. (1-PS4-4)

Connections to Nature of Science

- **Scientific Investigations Use a Variety of Methods**
 - Science investigations begin with a question. (1-PS4-1)
 - Scientists use different ways to study the world. (1-PS4-1)

PS4.C: Information Technologies and Instrumentation

- People also use a variety of devices to communicate (send and receive information) over long distances. (1-PS4-4)

Articulation of DCIs across grade-bands: K.ETS1.A (1-PS4-4); 2.PS1.A (1-PS4-3); 2.ETS1.B (1-PS4-4); 4.PS4.A (1-PS4-4); 4.PS4.C (1-PS4-4); 4.ETS1.A (1-PS4-1)

California Common Core State Standards Connections:

ELA/Literacy –

- **W.1.2** Write informative/explanatory texts in which they name a topic, supply some facts about the topic, and provide some sense of closure. (1-PS4-2)
- **W.1.7** Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions). (1-PS4-1), (1-PS4-2), (1-PS4-3), (1-PS4-4)
- **W.1.8** With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. (1-PS4-1), (1-PS4-2), (1-PS4-3)
- **SL.1.1.a-c** Participate in collaborative conversations with diverse partners about grade 1 topics and texts with peers and adults in small and larger groups. (1-PS4-1), (1-PS4-2), (1-PS4-3)

Mathematics –

- **MP5** Use appropriate tools strategically. (1-PS4-4)
- **1.MD.1–2** Measure lengths indirectly and by iterating length units. (1-PS4-4)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section titled “Disciplinary Core Ideas” is reproduced verbatim from *A Framework for K–12 Science Education: Practices, Crosscutting Concepts, and Core Ideas.*

26 | Grade-Level Standards
K–2 ETS1 Engineering Design

Students who demonstrate understanding can:

K–2-ETS1-1. Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

K–2-ETS1-2. Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

K–2-ETS1-3. Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

The performance expectation(s) above were developed using the following elements from the NRC document *A Framework for K–12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asking Questions and Defining Problems</td>
<td>ETS1.A: Defining and Delimiting Engineering Problems</td>
<td>Structure and Function</td>
</tr>
</tbody>
</table>
| Asking questions and defining problems in K–2 builds on prior experiences and progresses to simple descriptive questions.
 - Ask questions based on observations to find more information about the natural and/or designed world(s). (K–2-ETS1-1)
 - Define a simple problem that can be solved through the development of a new or improved object or tool. (K–2-ETS1-1) |
 - A situation that people want to change or create can be approached as a problem to be solved through engineering. (K–2-ETS1-1)
 - Asking questions, making observations, and gathering information are helpful in thinking about problems. (K–2-ETS1-1)
 - Before beginning to design a solution, it is important to clearly understand the problem. (K–2-ETS1-1) |
 - The shape and stability of structures of natural and designed objects are related to their function(s). (K–2-ETS1-2) |
| Developing and Using Models | ETS1.B: Developing Possible Solutions | |
| Modeling in K–2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
 - Develop a simple model based on evidence to represent a proposed object or tool. (K–2-ETS1-2) |
 - Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. (K–2-ETS1-2) | |
| Analyzing and Interpreting Data | ETS1.C: Optimizing the Design Solution | |
| Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations. |
 - Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (K–2-ETS1-3) | |

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section titled “Disciplinary Core Ideas” is reproduced verbatim from *A Framework for K–12 Science Education: Practices, Crosscutting Concepts, and Core Ideas.*
K–2 Engineering Design

- Analyze data from tests of an object or tool to determine if it works as intended. (K–2-ETS1-3)

California Environmental Principles and Concepts aligned to the CA NGSS: (K-2-ETS-1)

Principle V: Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.

Connections to other DCIs in other grade-bands:

- **Connections to K–2-ETS1.A: Defining and Delimiting Engineering Problems include:**
 - Kindergarten: K-PS2-2, K-ESS3-2
- **Connections to K–2-ETS1.B: Developing Possible Solutions to Problems include:**
 - Kindergarten: K-ESS3-3, First Grade: 1-PS4-4, Second Grade: 2-LS2-2
- **Connections to K–2-ETS1.C: Optimizing the Design Solution include:**
 - Second Grade: 2-ESS2-1

Articulation of DCIs across grade-bands: 3–5.ETS1.A (K–2-ETS1-1), (K–2-ETS1-2), (K–2-ETS1-3); 3–5.ETS1.B (K–2-ETS1-2); 3–5.ETS1.C (K–2-ETS1-1), (K–2-ETS1-2), (K–2-ETS1-3)

California Common Core State Standards Connections:

ELA/Literacy –

- **RI.2.1** Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (2-ESS1-1)
- **W.2.6** With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. (K–2-ETS1-1), (K–2-ETS1-3)
- **W.2.8** Recall information from experiences or gather information from provided sources to answer a question. (K–2-ETS1-1), (K–2-ETS1-3)
- **SL.2.5** Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. (K–2-ETS1-2)

Mathematics –

- **MP.2** Reason abstractly and quantitatively. (K–2-ETS1-1), (K–2-ETS1-3)
- **MP.4** Model with mathematics. (K–2-ETS1-1), (K–2-ETS1-3)
- **MR.5** Use appropriate tools strategically. (K–2-ETS1-1), (K–2-ETS1-3)

California Department of Education, June 2021

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section titled “Disciplinary Core Ideas” is reproduced verbatim from *A Framework for K–12 Science Education: Practices, Crosscutting Concepts, and Core Ideas*.