Grade-Level Standards:
Grades Nine through Twelve
Earth and Space Science
HS-ESS1 Earth’s Place in the Universe

Students who demonstrate understanding can:

HS-ESS1-1. Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun’s core to release energy that eventually reaches Earth in the form of radiation. [Clarification Statement: Emphasis is on the energy transfer mechanisms that allow energy from nuclear fusion in the sun’s core to reach Earth. Examples of evidence for the model include observations of the masses and lifetimes of other stars, as well as the ways that the sun’s radiation varies due to sudden solar flares (“space weather”), the 11-year sunspot cycle, and non-cyclic variations over centuries.] [Assessment Boundary: Assessment does not include details of the atomic and sub-atomic processes involved with the sun’s nuclear fusion.]

HS-ESS1-2. Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe. [Clarification Statement: Emphasis is on the astronomical evidence of the red shift of light from galaxies as an indication that the universe is currently expanding, the cosmic microwave background as the remnant radiation from the Big Bang, and the observed composition of ordinary matter of the universe, primarily found in stars and interstellar gases (from the spectra of electromagnetic radiation from stars), which matches that predicted by the Big Bang theory (3/4 hydrogen and 1/4 helium).]

HS-ESS1-3. Communicate scientific ideas about the way stars, over their life cycle, produce elements. [Clarification Statement: Emphasis is on the way nucleosynthesis, and therefore the different elements created, varies as a function of the mass of a star and the stage of its lifetime.] [Assessment Boundary: Details of the many different nucleosynthesis pathways for stars of differing masses are not assessed.]

HS-ESS1-4. Use mathematical or computational representations to predict the motion of orbiting objects in the solar system. [Clarification Statement: Emphasis is on Newtonian gravitational laws governing orbital motions, which apply to human-made satellites as well as planets and moons.] [Assessment Boundary: Mathematical representations for the gravitational attraction of bodies and Kepler’s Laws of orbital motions should not deal with more than two bodies, nor involve calculus.]

HS-ESS1-5. Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks. [Clarification Statement: Emphasis is on the ability of plate tectonics to explain the ages of crustal rocks. Examples include evidence of the ages, oceanic crust increasing with distance from mid-ocean ridges (a result of plate spreading), and the ages of North American continental crust increasing with distance away from a central ancient core (a result of past plate interactions).]

HS-ESS1-6. Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth’s formation and early history. [Clarification Statement: Emphasis is on using available evidence within the solar system to reconstruct the early history of Earth, which formed along with the rest of the solar system 4.6 billion years ago. Examples of evidence include the absolute ages of ancient materials (obtained by radiometric dating of meteorites, moon rocks, and Earth’s oldest minerals), the sizes and compositions of solar system objects, and the impact cratering record of planetary surfaces.]

The performance expectation(s) above were developed using the following elements from the NRC document *A Framework for K–12 Science Education*:

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

**California clarification statements, marked with double asterisks, were incorporated by the California Science Expert Review Panel.

The star symbol (★) following the standard indicates that it is also a Modeling standard. Modeling is best interpreted not as a collection of isolated topics but in relation to other standards.

Making mathematical models is a Standard for Mathematical Practice, and modeling standards appear throughout the higher mathematics standards indicated by a ★ symbol.

Science and Engineering Practices

Developing and Using Models
Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).

- Develop a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-ESS1-1)

Using Mathematical and Computational Thinking
Mathematical and computational thinking in 9–12 builds on K–8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

- Use mathematical or computational representations of phenomena to describe explanations. (HS-ESS1-4)

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.

ESS1.A: The Universe and Its Stars
- The star called the sun is changing and will burn out over a lifespan of approximately 10 billion years. (HS-ESS1-1)
- The study of stars’ light spectra and brightness is used to identify compositional elements of stars, their movements, and their distances from Earth. (HS-ESS1-2), (HS-ESS1-3)
- The Big Bang theory is supported by observations of distant galaxies receding from our own, of the measured composition of stars and non-stellar gases, and of the maps of spectra of the primordial radiation (cosmic microwave background) that still fills the universe. (HS-ESS1-2)
- Other than the hydrogen and helium formed at the time of the Big Bang, nuclear fusion within stars produces all atomic nuclei lighter than and including iron, and the process releases electromagnetic energy. Heavier elements are produced when certain massive stars achieve a supernova stage and explode. (HS-ESS1-2), (HS-ESS1-3)

ESS1.B: Earth and the Solar System
- Kepler’s laws describe common features of the motions of orbiting objects, including their elliptical paths around the sun. Orbits may change due to the gravitational effects from, or collisions with, other objects in the solar system. (HS-ESS1-4)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

California clarification statements, marked with double asterisks, were incorporated by the California Science Expert Review Panel.

The star symbol (★) following the standard indicates that it is also a Modeling standard. Modeling is best interpreted not as a collection of isolated topics but in relation to other standards.

Making mathematical models is a Standard for Mathematical Practice, and modeling standards appear throughout the higher mathematics standards indicated by a ★ symbol.

HS-ESS1 Earth’s Place in the Universe

- **Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.** (HS-ESS1-2)
- **Apply scientific reasoning to link evidence to the claims to assess the extent to which the reasoning and data support the explanation or conclusion.** (MS-ESS1-6)

Engaging in Argument from Evidence

Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.

- **Evaluate evidence behind currently accepted explanations or solutions to determine the merits of arguments.** (HS-ESS1-5)

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 9–12 builds on K–8 experiences and progresses to evaluating the validity and reliability of the claims, methods, and designs.

- **Communicate scientific ideas (e.g., about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically).** (HS-ESS1-3)

ESS1.C: The History of Planet Earth

- Continental rocks, which can be older than 4 billion years, are generally much older than the rocks of the ocean floor, which are less than 200 million years old. (HS-ESS1-5)
- Although active geologic processes, such as plate tectonics and erosion, have destroyed or altered most of the very early rock record on Earth, other objects in the solar system, such as lunar rocks, asteroids, and meteorites, have changed little over billions of years. Studying these objects can provide information about Earth’s formation and early history. (HS-ESS1-6)

ESS2.B: Plate Tectonics and Large-Scale System Interactions

- Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth’s surface and provides a framework for understanding its geologic history. (ESS2.B Grade 8 GBE), (secondary to HS-ESS1-5)

PS1.C: Nuclear Processes

- Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow radiometric dating to be used to determine the ages of rocks and other materials. (secondary to HS-ESS1-5), (secondary to HS-ESS1-6)

PS3.D: Energy in Chemical Processes and Everyday Life

- Nuclear Fusion processes in the center of the sun release the energy that ultimately reaches Earth as radiation. (secondary to HS-ESS1-1)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology

- Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise. (HS-ESS1-2), (HS-ESS1-4)

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

- Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future. (HS-ESS1-2)
- Science assumes the universe is a vast single system in which basic laws are consistent. (HS-ESS1-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

**California clarification statements, marked with double asterisks, were incorporated by the California Science Expert Review Panel.

The star symbol (★) following the standard indicates that it is also a Modeling standard. Modeling is best interpreted not as a collection of isolated topics but in relation to other standards.

Making mathematical models is a Standard for Mathematical Practice, and modeling standards appear throughout the higher mathematics standards indicated by a ★ symbol.

A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence. (HS-ESS1-2), (HS-ESS1-6)

Models, mechanisms, and explanations collectively serve as tools in the development of a scientific theory. (HS-ESS1-6)

| Connections to other DCIs in this grade-band: | HS.PS1.A (HS-ESS1-2), (HS-ESS1-3); HS.PS1.C (HS-ESS1-1), (HS-ESS1-2), (HS-ESS1-3); HS.PS2.A (HS-ESS1-6); HS.PS2.B (HS-ESS1-4), (HS-ESS1-6); HS.PS3.A (HS-ESS1-1), (HS-ESS1-2); HS.PS3.B (HS-ESS1-2), (HS-ESS1-5); HS.PS4.A (HS-ESS1-2); HS.ESS2.A (HS-ESS1-5), (HS-ESS1-6) |
| Articulation of DCIs across grade-bands: | MS.PS1.A (HS-ESS1-1), (HS-ESS1-2), (HS-ESS1-3); MS.PS2.A (HS-ESS1-4); MS.PS2.B (HS-ESS1-4), (HS-ESS1-6); MS.PS4.B (HS-ESS1-1), (HS-ESS1-2); MS.ESS1.A (HS-ESS1-1), (HS-ESS1-2), (HS-ESS1-3), (HS-ESS1-4); MS.ESS1.B (HS-ESS1-1), (HS-ESS1-4), (HS-ESS1-6); MS.ESS1.C (HS-ESS1-5), (HS-ESS1-6); MS.ESS2.A (HS-ESS1-1), (HS-ESS1-5), (HS-ESS1-6); MS.ESS2.B (HS-ESS1-5), (HS-ESS1-6); MS.ESS2.D (HS-ESS1-1) |

California Common Core State Standards Connections:

ELA/Literacy –

RST.11–12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-ESS1-1), (HS-ESS1-2), (HS-ESS1-5), (HS-ESS1-6)

RST.11–12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ESS1-5), (HS-ESS1-6)

WHST.9–12.1.a–e Write arguments focused on discipline-specific content. (HS-ESS1-6)

WHST.9–10.2.a–f Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. (HS-ESS1-2), (HS-ESS1-3), (HS-ESS1-5)
HS-ESS1 Earth’s Place in the Universe

WHST.11–12.a–e Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. (HS-ESS1-2), (HS-ESS1-3), (HS-ESS1-5)

SL.11–12.4 Present information, findings, and supporting evidence (e.g., reflective, historical investigation, response to literature presentations), conveying a clear and distinct perspective and a logical argument, such that listeners can follow the line of reasoning, alternative or opposing perspectives are addressed, and the organization, development, substance, and style are appropriate to purpose, audience, and a range of formal and informal tasks. Use appropriate eye contact, adequate volume, and clear pronunciation. CA (HS-LS4-1), (HS-LS4-2)

a. Plan and deliver a reflective narrative that: explores the significance of a personal experience, event, or concern; uses sensory language to convey a vivid picture; includes appropriate narrative techniques (e.g., dialogue, pacing, description); and draws comparisons between the specific incident and broader themes. (grade eleven or twelve) CA

b. Plan and present an argument that: supports a precise claim; provides a logical sequence for claims, counterclaims, and evidence; uses rhetorical devices to support assertions (e.g., analogy, appeal to logic through reasoning, appeal to emotion or ethical belief); uses varied syntax to link major sections of the presentation to create cohesion and clarity; and provides a concluding statement that supports the argument presented. (grade eleven or twelve) CA (HS-ESS1-3)

Mathematics –

MP.2 Reason abstractly and quantitatively. (HS-ESS1-1), (HS-ESS1-2), (HS-ESS1-3), (HS-ESS1-4), (HS-ESS1-5), (HS-ESS1-6)

MP.4 Model with mathematics. (HS-ESS1-1), (HS-ESS1-4)

N-Q.1–3 Reason quantitatively and use units to solve problems. (HS-ESS1-1), (HS-ESS1-2), (HS-ESS1-4), (HS-ESS1-5), (HS-ESS1-6)

A-SSE.1.a–b Interpret expressions that represent a quantity in terms of its context. ★ (HS-ESS1-1), (HS-ESS1-2), (HS-ESS1-4)

A-CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. ★ (HS-ESS1-1), (HS-ESS1-2), (HS-ESS1-4)

A-CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law V = IR to highlight resistance R. ★ (HS-ESS1-1), (HS-ESS1-2), (HS-ESS1-4)

F-IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. ★ (HS-ESS1-6)

S-ID.6.a–c Represent data on two quantitative variables on a scatter plot, and describe how those variables are related. ★ (HS-ESS1-6)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

**California clarification statements, marked with double asterisks, were incorporated by the California Science Expert Review Panel.

The star symbol (★) following the standard indicates that it is also a Modeling standard. Modeling is best interpreted not as a collection of isolated topics but in relation to other standards. Making mathematical models is a Standard for Mathematical Practice, and modeling standards appear throughout the higher mathematics standards indicated by a ★ symbol.

<table>
<thead>
<tr>
<th>Grade-Level Standards</th>
<th>HS-ESS2 Earth’s Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS-ESS2 Earth’s Systems</td>
<td>Students who demonstrate understanding can:</td>
</tr>
<tr>
<td>HS-ESS2-1. Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features. [Clarification Statement: Emphasis is on how the appearance of land features (such as mountains, valleys, and plateaus) and sea-floor features (such as trenches, ridges, and seamounts) are a result of both constructive forces (such as volcanism, tectonic uplift, and orogeny) and destructive mechanisms (such as weathering, mass wasting, and coastal erosion).] [Assessment Boundary: Assessment does not include memorization of the details of the formation of specific geographic features of Earth’s surface.]</td>
<td></td>
</tr>
<tr>
<td>HS-ESS2-2. Analyze geoscience data to make the claim that one change to Earth’s surface can create feedbacks that cause changes to other Earth’s systems. [Clarification Statement: Examples should include climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperatures that melts glacial ice, which reduces the amount of sunlight reflected from Earth’s surface, increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions, such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.]</td>
<td></td>
</tr>
<tr>
<td>HS-ESS2-3. Develop a model based on evidence of Earth’s interior to describe the cycling of matter by thermal convection. [Clarification Statement: Emphasis is on both a one-dimensional model of Earth, with radial layers determined by density, and a three-dimensional model, which is controlled by mantle convection and the resulting plate tectonics. Examples of evidence include maps of Earth’s three-dimensional structure obtained from seismic waves, records of the rate of change of Earth’s magnetic field (as constraints on convection in the outer core), and identification of the composition of Earth’s layers from high-pressure laboratory experiments.]</td>
<td></td>
</tr>
<tr>
<td>HS-ESS2-4. Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate. [Clarification Statement: Examples of the causes of climate change differ by timescale, over 1–10 years: large volcanic eruption, ocean circulation; 10–100s of years: changes in human activity, ocean circulation, solar output; 10–100s of thousands of years: changes to Earth’s orbit and the orientation of its axis; and 10–100s of millions of years: long-term changes in atmospheric composition.] [Assessment Boundary: Assessment of the results of changes in climate is limited to changes in surface temperatures, precipitation patterns, glacial ice volumes, sea levels, and biosphere distribution.]</td>
<td></td>
</tr>
<tr>
<td>HS-ESS2-5. Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. [Clarification Statement: Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide the evidence for connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, erosion using variations in soil moisture content, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids).]</td>
<td></td>
</tr>
</tbody>
</table>

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.
**California clarification statements, marked with double asterisks, were incorporated by the California Science Expert Review Panel.
The star symbol (*) following the standard indicates that it is also a Modeling standard. Modeling is best interpreted not as a collection of isolated topics but in relation to other standards.
Making mathematical models is a Standard for Mathematical Practice, and modeling standards appear throughout the higher mathematics standards indicated by a ★ symbol.
HS-ESS2 Earth’s Systems

HS-ESS2-6. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. [Clarification Statement: **The carbon cycle is a property of the Earth system that arises from interactions among the hydrosphere, atmosphere, geosphere, and biosphere. Emphasis is on modeling biogeochemical cycles that include the cycling of carbon through the ocean, atmosphere, soil, and biosphere (including humans), providing the foundation for living organisms.**]

HS-ESS2-7. Construct an argument based on evidence about the simultaneous coevolution of Earth’s systems and life on Earth. [Clarification Statement: Emphasis is on the dynamic causes, effects, and feedbacks between the biosphere and Earth’s other systems, whereby geoscience factors control the evolution of life, which in turn continuously alters Earth’s surface. Examples include how photosynthetic life altered the atmosphere through the production of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial life on land increased the formation of soil, which in turn allowed for the evolution of land plants; or how the evolution of corals created reefs that altered patterns of erosion and deposition along coastlines and provided habitats for the evolution of new life forms.] [Assessment Boundary: Assessment does not include a comprehensive understanding of the mechanisms of how the biosphere interacts with all of Earth’s other systems.]

The performance expectation(s) above were developed using the following elements from the NRC document *A Framework for K–12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>ESS1.B: Earth and the Solar System</td>
<td>Cause and Effect</td>
</tr>
<tr>
<td>Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).</td>
<td>▪ Cyclical changes in the shape of Earth’s orbit around the sun, together with changes in the tilt of the planet’s axis of rotation, both occurring over hundreds of thousands of years, have altered the intensity and distribution of sunlight falling on the earth. These phenomena cause a cycle of ice ages and other gradual climate changes. (secondary to HS-ESS2-4)</td>
<td>▪ Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-ESS2-4)</td>
</tr>
<tr>
<td>▪ Develop a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-ESS2-1), (HS-ESS2-3), (HS-ESS2-6)</td>
<td>ESS2.A: Earth Materials and Systems</td>
<td>Energy and Matter</td>
</tr>
<tr>
<td>▪ Use a model to provide mechanistic accounts of phenomena. (HS-ESS2-4)</td>
<td>▪ Earth’s systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. (HS-ESS2-1), (HS-ESS2-2)</td>
<td>▪ The total amount of energy and matter in closed systems is conserved. (HS-ESS2-6)</td>
</tr>
<tr>
<td>Planning and Carrying Out Investigations</td>
<td>▪ Evidence from deep probes and seismic waves, reconstructions of historical changes in Earth’s surface</td>
<td>Structure and Function</td>
</tr>
<tr>
<td>Planning and carrying out investigations in 9–12 builds on K–8 experiences and progresses to include investi-</td>
<td></td>
<td>▪ The functions and properties of natural and designed objects and systems can be inferred from their overall structure, the way their components are shaped and used, and the molecular substructures of its various materials. (HS-ESS2-5)</td>
</tr>
</tbody>
</table>
HS-ESS2 Earth’s Systems

<table>
<thead>
<tr>
<th>Engaging in Argument from Evidence</th>
<th>Analyzing and Interpreting Data</th>
<th>Stability and Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.</td>
<td>Analyzing data in 9–12 builds on K–8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.</td>
<td>Much of science deals with constructing explanations of how things change and how they remain stable. (HS-ESS2-7)</td>
</tr>
<tr>
<td>Construct an oral and written argument or counter-arguments based on data and evidence. (HS-ESS2-7)</td>
<td>Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (HS-ESS2-2)</td>
<td>Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible. (HS-ESS2-1)</td>
</tr>
</tbody>
</table>

ESS2.B: Plate Tectonics and Large-Scale System Interactions

- The radioactive decay of unstable isotopes continually generates new energy within Earth’s crust and mantle, providing the primary source of the heat that drives mantle convection. Plate tectonics can be viewed as the surface expression of mantle convection. (HS-ESS2-3)
- Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth’s surface and provides a framework for understanding its geologic history. Plate movements are responsible for most continental and ocean-floor

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology

- Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise. (HS-ESS2-3)

Influence of Engineering, Technology, and Science on Society and the Natural World

- New technologies can have deep impacts on society and the environment, including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology. (HS-ESS2-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

**California clarification statements, marked with double asterisks, were incorporated by the California Science Expert Review Panel.

The star symbol (**) following the standard indicates that it is also a Modeling standard. Modeling is best interpreted not as a collection of isolated topics but in relation to other standards.

Making mathematical models is a Standard for Mathematical Practice, and modeling standards appear throughout the higher mathematics standards indicated by a ** symbol.

HS-ESS2 Earth’s Systems

Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence
- Science knowledge is based on empirical evidence. (HS-ESS2-3)
- Science disciplines share common rules of evidence used to evaluate explanations about natural systems. (HS-ESS2-3)
- Science includes the process of coordinating patterns of evidence with current theory. (HS-ESS2-3)
- Science arguments are strengthened by multiple lines of evidence supporting a single explanation. (HS-ESS2-4)

ESS2.B: The Roles of Water in Earth’s Surface Processes
- The abundance of liquid water on Earth’s surface and its unique combination of physical and chemical properties are central to the planet’s dynamics. These properties include water’s exceptional capacity to absorb, store, and release large amounts of energy, transmit sunlight, expand upon freezing, dissolve and transport materials, and lower the viscosities and melting points of rocks. (HS-ESS2-5)

ESS2.D: Weather and Climate
- The foundation for Earth’s global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy’s re-radiation into space. (HS-ESS2-2), (HS-ESS2-4)
- Gradual atmospheric changes were due to plants and other organisms that captured carbon dioxide and released oxygen. (HS-ESS2-6), (HS-ESS2-7)
- Changes in the atmosphere due to human activity have increased carbon dioxide concentrations and thus affect climate. (HS-ESS2-6), (HS-ESS2-4)

ESS2.E: Biogeology
- The many dynamic and delicate feedbacks between the biosphere and other Earth systems cause a continual co-evolution of Earth’s surface and the life that exists on it. (HS-ESS2-7)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

**California clarification statements, marked with double asterisks, were incorporated by the California Science Expert Review Panel.

The star symbol (★) following the standard indicates that it is also a Modeling standard. Modeling is best interpreted not as a collection of isolated topics but in relation to other standards.

Making mathematical models is a Standard for Mathematical Practice, and modeling standards appear throughout the higher mathematics standards indicated by a ★ symbol.

HS-ESS2 Earth’s Systems

PS4.A: Wave Properties
- Geologists use seismic waves and their reflection at interfaces between layers to probe structures deep in the planet. (secondary to HS-ESS2-3)

California Environmental Principles and Concepts aligned to the CA NGSS: (HS-ESS2-2), (HS-ESS2-4), (HS-ESS2-5), (HS-ESS2-6)

Principle III: Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.

Principle IV: The exchange of matter between natural systems and human societies affects the long-term functioning of both.

Connections to other DCIs in this grade-band: HS.PS1.A (HS-ESS2-5), (HS-ESS2-6); HS.PS1.B (HS-ESS2-5), (HS-ESS2-6); HS.PS2.B (HS-ESS2-1), (HS-ESS2-3); HS.PS3.A (HS-ESS2-4); HS.PS3.B (HS-ESS2-2), (HS-ESS2-3), (HS-ESS2-4), (HS-ESS2-5); HS.PS3.D (HS-ESS2-3), (HS-ESS2-6); HS.PS4.B (HS-ESS2-2); LS.LS1.C (HS-ESS2-6); LS.LS2.A (HS-ESS2-7); LS.LS2.B (HS-ESS2-2), (HS-ESS2-6); LS.LS2.C (HS-ESS2-2), (HS-ESS2-4), (HS-ESS2-7); LS.LS4.A (HS-ESS2-7); LS.LS4.B (HS-ESS2-7); LS.LS4.C (HS-ESS2-7); LS.LS4.D (HS-ESS2-2), (HS-ESS2-7); ESS1.C (HS-ESS2-4); ESS3.C (HS-ESS2-2), (HS-ESS2-4), (HS-ESS2-5), (HS-ESS2-6); ESS3.D (HS-ESS2-2), (HS-ESS2-4), (HS-ESS2-6)

Articulation of DCIs across grade-bands: MS.PS1.A (HS-ESS2-3), (HS-ESS2-5), (HS-ESS2-6); MS.PS1.B (HS-ESS2-3), (HS-ESS2-3); MS.PS2.B (HS-ESS2-1), (HS-ESS2-3); MS.PS3.A (HS-ESS2-3), (HS-ESS2-4); MS.PS3.B (HS-ESS2-3), (HS-ESS2-4); MS.PS3.D (HS-ESS2-2), (HS-ESS2-4), (HS-ESS2-6); MS.PS4.B (HS-ESS2-2), (HS-ESS2-4), (HS-ESS2-5), (HS-ESS2-6); LS.LS1.A (HS-ESS2-4); LS.LS2.A (HS-ESS2-7); LS.LS2.B (HS-ESS2-2), (HS-ESS2-4), (HS-ESS2-6); LS.LS2.C (HS-ESS2-2), (HS-ESS2-4), (HS-ESS2-7); LS.LS4.A (HS-ESS2-7); LS.LS4.B (HS-ESS2-2), (HS-ESS2-7); ESS1.C (HS-ESS2-1), (HS-ESS2-7); LS.ESS2.A (HS-ESS2-1), (HS-ESS2-2), (HS-ESS2-3), (HS-ESS2-4), (HS-ESS2-6); MS.ESS2.B (HS-ESS2-2), (HS-ESS2-2), (HS-ESS2-4), (HS-ESS2-5); MS.ESS2.C (HS-ESS2-1), (HS-ESS2-2), (HS-ESS2-4), (HS-ESS2-5), (HS-ESS2-6); MS.ESS2.E (HS-ESS2-1), (HS-ESS2-2), (HS-ESS2-4), (HS-ESS2-5), (HS-ESS2-6); MS.ESS3.C (HS-ESS2-2), (HS-ESS2-4), (HS-ESS2-6); MS.ESS3.D (HS-ESS2-2), (HS-ESS2-4), (HS-ESS2-6)

California Common Core State Standards Connections:

ELA/Literacy –

RST.11–12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-ESS2-2), (HS-ESS2-3)

RST.11–12.2 Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. (HS-ESS2-2)

WHST.9–12.1.a–e Write arguments focused on discipline-specific content. (HS-ESS2-7)

WHST.9–12.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-ESS2-5)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

**California clarification statements, marked with double asterisks, were incorporated by the California Science Expert Review Panel.

The star symbol (*) following the standard indicates that it is also a Modeling standard. Modeling is best interpreted not as a collection of isolated topics but in relation to other standards.

Making mathematical models is a Standard for Mathematical Practice, and modeling standards appear throughout the higher mathematics standards indicated by a ✫ symbol.

HS-ESS2 Earth’s Systems

SL.11–12.5	Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-ESS2-1), (HS-ESS2-3), (HS-ESS2-4)
Mathematics –	
MP.2	Reason abstractly and quantitatively. (HS-ESS2-1), (HS-ESS2-2), (HS-ESS2-3), (HS-ESS2-4), (HS-ESS2-6)
MP.4	Model with mathematics. (HS-ESS2-1), (HS-ESS2-3), (HS-ESS2-4), (HS-ESS2-6)
N-Q.1–3	Reason quantitatively and use units to solve problems. ★ (HS-ESS2-1), (HS-ESS2-2), (HS-ESS2-3), (HS-ESS2-4), (HS-ESS2-6)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

**California clarification statements, marked with double asterisks, were incorporated by the California Science Expert Review Panel.

The star symbol (★) following the standard indicates that it is also a Modeling standard. Modeling is best interpreted not as a collection of isolated topics but in relation to other standards. Making mathematical models is a Standard for Mathematical Practice, and modeling standards appear throughout the higher mathematics standards indicated by a ★ symbol.

HS-ESS3 Earth and Human Activity

Students who demonstrate understanding can:

HS-ESS3-1. Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. [Clarification Statement: Examples of key natural resources include access to fresh water (such as rivers, lakes, and groundwater), regions of fertile soils such as river deltas, and high concentrations of minerals and fossil fuels. Examples of natural hazards can be from interior processes (such as volcanic eruptions and earthquakes), surface processes (such as tsunamis, mass wasting, and soil erosion), and severe weather (such as hurricanes, floods, and droughts). Examples of the results of changes in climate that can affect populations or drive mass migrations include changes to sea level, regional patterns of temperature and precipitation, and the types of crops and livestock that can be raised.]

HS-ESS3-2. Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.* [Clarification Statement: Emphasis is on the conservation, recycling, and reuse of resources (such as minerals and metals) where possible, and on minimizing impacts where it is not. Examples include developing best practices for agricultural soil use, mining (for coal, tar sands, and oil shales), and pumping (for petroleum and natural gas). Science knowledge indicates what can happen in natural systems—not what should happen.]

HS-ESS3-3. Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity. [Clarification Statement: Examples of factors that affect the management of natural resources include costs of resource extraction and waste management, per-capita consumption, and the development of new technologies. Examples of factors that affect human sustainability include agricultural efficiency, levels of conservation, and urban planning.] [Assessment Boundary: Assessment for computational simulations is limited to using provided multi-parameter programs or constructing simplified spreadsheet calculations.]

HS-ESS3-4. Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.* [Clarification Statement: Examples of data on the impacts of human activities could include the quantities and types of pollutants released, changes to biomass and species diversity, or areal changes in land surface use (such as for urban development, agriculture and livestock, or surface mining). Examples for limiting future impacts could range from local efforts (such as reducing, reusing, and recycling resources) to large-scale geoengineering design solutions (such as altering global temperatures by making large changes to the atmosphere or ocean).]

HS-ESS3-5. Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems. [Clarification Statement: Examples of evidence, for both data and climate model outputs, are for climate changes (such as precipitation and temperature) and their associated impacts (such as on sea level, glacial ice volumes, or atmosphere and ocean composition).] [Assessment Boundary: Assessment is limited to one example of a climate change and its associated impacts.]

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

**California clarification statements, marked with double asterisks, were incorporated by the California Science Expert Review Panel.

The star symbol (*) following the standard indicates that it is also a Modeling standard. Modeling is best interpreted not as a collection of isolated topics but in relation to other standards.

Making mathematical models is a Standard for Mathematical Practice, and modeling standards appear throughout the higher mathematics standards indicated by a ★ symbol.

HS-ESS3 Earth and Human Activity

HS-ESS3-6. Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity. [Clarification Statement: Examples of Earth systems to be considered are the hydrosphere, atmosphere, cryosphere, geosphere, and/or biosphere. An example of the far-reaching impacts from a human activity is how an increase in atmospheric carbon dioxide results in an increase in ocean acidification, with resulting impacts on sea organism health and marine populations.] [Assessment Boundary: Assessment does not include running computational representations but is limited to using the published results of scientific computational models.]

The performance expectation(s) above were developed using the following elements from the NRC document *A Framework for K–12 Science Education*:

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 9–12 builds on K–8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.

- Analyze data using computational models in order to make valid and reliable scientific claims. (HS-ESS3-5)

Using Mathematics and Computational Thinking

Mathematical and computational thinking in 9–12 builds on K–8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

- Create a computational model or simulation of a phenomenon, designed device, process, or system. (HS-ESS3-3)
- Use a computational representation of phenomena or design solutions to describe and/or support claims and/or explanations. (HS-ESS3-6)

Disciplinary Core Ideas

ESS2.D: Weather and Climate

- Current models predict that, although future regional climate changes will be complex and varied, average global temperatures will continue to rise. The outcomes predicted by global climate models strongly depend on the amounts of human-generated greenhouse gases added to the atmosphere each year and by the ways in which these gases are absorbed by the ocean and biosphere. (secondary to HS-ESS3-6)

ESS3.A: Natural Resources

- Resource availability has guided the development of human society. (HS-ESS3-1)
- All forms of energy production and other resource extraction have associated economic, social, environmental, and geopolitical costs and risks as well as benefits. New technologies and social regulations can change the balance of these factors. (HS-ESS3-2)

ESS3.B: Natural Hazards

- Natural hazards and other geologic events have shaped the course of human history; [they] have significantly altered the sizes of human populations and have driven human migrations. (HS-ESS3-1)

Crosscutting Concepts

Cause and Effect

- Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-ESS3-1)

Systems and System Models

- When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models. (HS-ESS3-6)

Stability and Change

- Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible. (HS-ESS3-3), (HS-ESS3-5)
- Feedback (negative or positive) can stabilize or destabilize a system. (HS-ESS3-4)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

**California clarification statements, marked with double asterisks, were incorporated by the California Science Expert Review Panel.

The star symbol (★) following the standard indicates that it is also a Modeling standard. Modeling is best interpreted not as a collection of isolated topics but in relation to other standards. Making mathematical models is a Standard for Mathematical Practice, and modeling standards appear throughout the higher mathematics standards indicated by a ★ symbol.

HS-ESS3 Earth and Human Activity

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific knowledge, principles, and theories.

- Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (HS-ESS3-1)
- Design or refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-ESS3-4)

Engaging in Argument from Evidence

Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.

- Evaluate competing design solutions to a real-world problem based on scientific ideas and principles, empirical evidence, and logical arguments regarding relevant factors (e.g., economic, societal, environmental, ethical considerations). (HS-ESS3-2)

ESS3.C: Human Impacts on Earth Systems

- The sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources. (HS-ESS3-3)
- Scientists and engineers can make major contributions by developing technologies that produce less pollution and waste and that preclude ecosystem degradation. (HS-ESS3-4)

ESS3.D: Global Climate Change

- Though the magnitudes of human impacts are greater than they have ever been, so too are human abilities to model, predict, and manage current and future impacts. (HS-ESS3-5)
- Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere, and the biosphere interact and are modified in response to human activities. (HS-ESS3-6)

ETS1.B: Developing Possible Solutions

- When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (secondary to HS-ESS3-2), (secondary to HS-ESS3-4)

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science on Society and the Natural World

- Modern civilization depends on major technological systems. (HS-ESS3-1), (HS-ESS3-3)
- Engineers continuously modify these technological systems by applying scientific knowledge and engineering design practices to increase benefits while decreasing costs and risks. (HS-ESS3-2), (HS-ESS3-4)
- New technologies can have deep impacts on society and the environment, including some that were not anticipated. (HS-ESS3-3)
- Analysis of costs and benefits is a critical aspect of decisions about technology. (HS-ESS3-2)

Connections to Nature of Science

Science is a Human Endeavor

- Science is a result of human endeavors, imagination, and creativity. (HS-ESS3-3)

Science Addresses Questions About the Natural and Material World

- Science and technology may raise ethical issues for which science, by itself, does not provide answers and solutions. (HS-ESS3-2)
- Science knowledge indicates what can happen in natural systems—not what should happen. The latter involves ethics, values, and human decisions about the use of knowledge. (HS-ESS3-2)
Connections to Nature of Science

Scientific Investigations Use a Variety of Methods
- Science investigations use diverse methods and do not always use the same set of procedures to obtain data. (HS-ESS3–5)
- New technologies advance scientific knowledge. (HS-ESS3–5)

Scientific Knowledge is Based on Empirical Evidence
- Science knowledge is based on empirical evidence. (HS-ESS3–5)
- Science arguments are strengthened by multiple lines of evidence supporting a single explanation. (HS-ESS3–5)

California Environmental Principles and Concepts aligned to the CA NGSS: (HS-ESS3-1), (HS-ESS3-2), (HS-ESS3-3), (HS-ESS3-4), (HS-ESS3-5), (HS-ESS3-6)

Principle I: The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services.

Principle II: The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems depend on the health of the natural systems that provide essential goods and ecosystem services.

Principle III: Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.

Principle IV: The exchange of matter between natural systems and human societies affects the long-term functioning of both.

Principle V: Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.

Connections to other DCIs in this grade-band: HS.PS1.B (HS-ESS3-3); HS.PS3.B (HS-ESS3-2), (HS-ESS3-5); HS.PS3.D (HS-ESS3-2), (HS-ESS3-5); HS.LS1.C (HS-ESS3-5); HS.LS2.A (HS-ESS3-2), (HS-ESS3-3); HS.LS2.B (HS-ESS3-2), (HS-ESS3-3), (HS-ESS3-6); HS.LS2.C (HS-ESS3-3), (HS-ESS3-4), (HS-ESS3-6); HS.LS4.D (HS-ESS3-2), (HS-ESS3-3), (HS-ESS3-4), (HS-ESS3-6); HS.ESS2.A (HS-ESS3-2), (HS-ESS3-3), (HS-ESS3-6); HS.ESS2.D (HS-ESS3-5); HS.ESS2.E (HS-ESS3-3)

Articulation of DCIs across grade-bands: MS.PS1.B (HS-ESS3-3); MS.PS3.B (HS-ESS3-2), (HS-ESS3-3), (HS-ESS3-5); MS.PS3.D (HS-ESS3-2), (HS-ESS3-5); MS.LS2.A (HS-ESS3-1), (HS-ESS3-2), (HS-ESS3-3), (HS-ESS3-4), (HS-ESS3-5), (HS-ESS3-6); MS.LS2.C (HS-ESS3-3), (HS-ESS3-4), (HS-ESS3-6); MS.LS4.C (HS-ESS3-3), (HS-ESS3-4), (HS-ESS3-5); MS.LS4.D (HS-ESS3-1), (HS-ESS3-2), (HS-ESS3-3), (HS-ESS3-4), (HS-ESS3-5), (HS-ESS3-6); MS.ESS2.A (HS-ESS3-1), (HS-ESS3-2), (HS-ESS3-3), (HS-ESS3-4), (HS-ESS3-5); MS.ESS2.B (HS-ESS3-1), (HS-ESS3-2), (HS-ESS3-3), (HS-ESS3-4), (HS-ESS3-5), (HS-ESS3-6); MS.ESS3.A (HS-ESS3-1), (HS-ESS3-2), (HS-ESS3-3), (HS-ESS3-4), (HS-ESS3-5), (HS-ESS3-6); MS.ESS3.B (HS-ESS3-1), (HS-ESS3-2), (HS-ESS3-3), (HS-ESS3-4), (HS-ESS3-5), (HS-ESS3-6); MS.ESS3.C (HS-ESS3-2), (HS-ESS3-3), (HS-ESS3-4), (HS-ESS3-5), (HS-ESS3-6)
HS-ESS3 Earth and Human Activity

California Common Core State Standards Connections:

ELA/Literacy –

RST.11–12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-ESS3-1), (HS-ESS3-2), (HS-ESS3-4), (HS-ESS3-5)

RST.11–12.2 Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. (HS-ESS3-5)

RST.11–12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-ESS3-5)

RST.11–12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ESS3-2), (HS-ESS3-4)

WHST.9–10.2.a–f Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. (HS-ESS3-1)

WHST.11–12.2.a–e Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. (HS-ESS3-1)

Mathematics –

MP2 Reason abstractly and quantitatively. (HS-ESS3-1), (HS-ESS3-2), (HS-ESS3-3), (HS-ESS3-4), (HS-ESS3-5), (HS-ESS3-6)

MP4 Model with mathematics. (HS-ESS3-3), (HS-ESS3-6)

N-Q.1–3 Reason quantitatively and use units to solve problems. ★ (HS-ESS3-1), (HS-ESS3-4), (HS-ESS3-5), (HS-ESS3-6)

California Department of Education, June 2021